Skip to content
Home » 대학 물리학 10 판 솔루션 | [#4] 대학교 전공책 \U0026 솔루션 Pdf 무료로 다운받기 최근 답변 160개

대학 물리학 10 판 솔루션 | [#4] 대학교 전공책 \U0026 솔루션 Pdf 무료로 다운받기 최근 답변 160개

당신은 주제를 찾고 있습니까 “대학 물리학 10 판 솔루션 – [#4] 대학교 전공책 \u0026 솔루션 PDF 무료로 다운받기“? 다음 카테고리의 웹사이트 kk.taphoamini.com 에서 귀하의 모든 질문에 답변해 드립니다: https://kk.taphoamini.com/wiki. 바로 아래에서 답을 찾을 수 있습니다. 작성자 척척석사 이(가) 작성한 기사에는 조회수 496,630회 및 좋아요 28,973개 개의 좋아요가 있습니다.

Table of Contents

대학 물리학 10 판 솔루션 주제에 대한 동영상 보기

여기에서 이 주제에 대한 비디오를 시청하십시오. 주의 깊게 살펴보고 읽고 있는 내용에 대한 피드백을 제공하세요!

d여기에서 [#4] 대학교 전공책 \u0026 솔루션 PDF 무료로 다운받기 – 대학 물리학 10 판 솔루션 주제에 대한 세부정보를 참조하세요

안녕하세요.
오늘은 비싼 대학 전공책을 매번 구매하기 부담스러운 분들을 위해 무료로 전공책과 솔루션을 PDF로 얻을 수 있는 사이트를 소개해봤습니다.
더 궁금하신 사항이 있다면 댓글로 남겨주세요!
감사합니다.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
🎵Music provided by 브금대통령
🎵Track : 힙리제를 위하여 – https://youtu.be/Hcv_0Fo_Kc0
🎵Track : Paesaggio Italiano – https://youtu.be/9PRnPdgNhMI
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
#대학전공책 #대학솔루션 #전공책PDF

대학 물리학 10 판 솔루션 주제에 대한 자세한 내용은 여기를 참조하세요.

북스힐 대학 물리학 10 판 Pdf | [#4] 대학교 전공책 \U0026 …

안녕하세요. 오늘은 비싼 대학 전공책을 매번 구매하기 부담스러운 분들을 위해 무료로 전공책과 솔루션을 PDF로 얻을 수 있는 사이트를 소개해봤습니다. 더 궁금하신 사항 …

+ 여기에 더 보기

Source: you.covadoc.vn

Date Published: 8/1/2021

View: 5399

대학 물리학 10 솔루션 물리 * 올레포트 검색결과

대학 물리학 10 솔루션 물리 대학리포트 올레포트 무료표지 공업수학 솔루션 졸업논문 학업계획서 방송통신대학 자기소개서 이력서 사업계획서 기업분석.

+ 여기에 표시

Source: allreport.co.kr

Date Published: 3/25/2022

View: 1598

대학전공 솔루션 해답 해설 답지 모음 solution

13. peter oneil 북스힐 공업수학 7판 솔루션입니다. 14. 맥머리 유기화학 9판 솔루션. 15. 할리데이 일반물리학 10판 …

+ 여기에 보기

Source: reportmaster.tistory.com

Date Published: 5/15/2022

View: 6323

일반물리학2 개정10판 22장 솔루션 – 191 Chapter … – StuDocu

일반물리학2 개정10판 22장 솔루션 Principles of physics 10th edition ch22 chapter 22 think our system consists of two point charges of opposite signs fixed …

+ 여기에 자세히 보기

Source: www.studocu.com

Date Published: 7/19/2022

View: 1143

애플레포트 북스힐 대학물리학 10판 솔루션 요약정리물리솔루션

애플레포트✓북스힐 대학물리학 10판 솔루션 요약정리물리솔루션. 희귀 A+ 자료 최대 보유! 애플레포트에 오신 것을 환영합니다! 레포트 작성하는데 하루를 다 보내 …

+ 더 읽기

Source: www.freereport.kr

Date Published: 4/15/2022

View: 6667

무료다운 – 대학물리학 북스힐 10판 솔루션 맨큐의 거시경제학 7 …

pdf 프린트 가능 일반화학 레이먼드 창 11판 입니다. 올레포트 자료 먼저 소개할 파일은 대략 1,158페이지짜리 PDF문서(PDF) 로 작성된 솔루션 대학물리학 …

+ 여기를 클릭

Source: ww.bikerslab.com

Date Published: 11/26/2021

View: 9283

대학 물리학 솔루션 * 레포트다운 검색결과

대학 물리 10판 \ (2,539) 대학 물리 10판 솔루션 (2,539) … 대학 물리학 10판 (2) 대학 물리학 8판 (2) 대학 물리학 9판 (2) …

+ 여기에 보기

Source: www.reportdown.co.kr

Date Published: 12/30/2022

View: 1926

핵심 대학 물리학 10 판 솔루션 | [#4] 대학교 전공책 \U0026 …

d여기에서 [#4] 대학교 전공책 \u0026 솔루션 PDF 무료로 다운받기 – 핵심 대학 물리학 10 판 솔루션 주제에 대한 세부정보를 참조하세요.

+ 더 읽기

Source: ppa.1111.com.vn

Date Published: 11/24/2022

View: 2462

북스힐 일반물리학 연습문제 솔루션 & 해설 – 문풀이 – 티스토리

북스힐 일반물리학 연습문제 솔루션입니다. 이 글은 북스힐 일반물리학 연습문제 솔루션을 다루고 있습니다. 북스힐 일반물리학 연습문제 솔루션을 …

+ 여기에 더 보기

Source: tistorysolution.tistory.com

Date Published: 8/3/2022

View: 3412

주제와 관련된 이미지 대학 물리학 10 판 솔루션

주제와 관련된 더 많은 사진을 참조하십시오 [#4] 대학교 전공책 \u0026 솔루션 PDF 무료로 다운받기. 댓글에서 더 많은 관련 이미지를 보거나 필요한 경우 더 많은 관련 기사를 볼 수 있습니다.

[#4] 대학교 전공책 \u0026 솔루션 PDF 무료로 다운받기
[#4] 대학교 전공책 \u0026 솔루션 PDF 무료로 다운받기

주제에 대한 기사 평가 대학 물리학 10 판 솔루션

  • Author: 척척석사
  • Views: 조회수 496,630회
  • Likes: 좋아요 28,973개
  • Date Published: 2020. 6. 12.
  • Video Url link: https://www.youtube.com/watch?v=YxhUy5C1OoU

북스힐 대학 물리학 10 판 Pdf | [#4] 대학교 전공책 \U0026 솔루션 Pdf 무료로 다운받기 답을 믿으세요

당신은 주제를 찾고 있습니까 “북스힐 대학 물리학 10 판 pdf – [#4] 대학교 전공책 \u0026 솔루션 PDF 무료로 다운받기“? 다음 카테고리의 웹사이트 https://you.covadoc.vn 에서 귀하의 모든 질문에 답변해 드립니다: you.covadoc.vn/blog. 바로 아래에서 답을 찾을 수 있습니다. 작성자 척척석사 이(가) 작성한 기사에는 조회수 482,022회 및 좋아요 28,831개 개의 좋아요가 있습니다.

여기에서 이 주제에 대한 비디오를 시청하십시오. 주의 깊게 살펴보고 읽고 있는 내용에 대한 피드백을 제공하세요!

안녕하세요.

오늘은 비싼 대학 전공책을 매번 구매하기 부담스러운 분들을 위해 무료로 전공책과 솔루션을 PDF로 얻을 수 있는 사이트를 소개해봤습니다.

더 궁금하신 사항이 있다면 댓글로 남겨주세요!

감사합니다.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

🎵Music provided by 브금대통령

🎵Track : 힙리제를 위하여 – https://youtu.be/Hcv_0Fo_Kc0

🎵Track : Paesaggio Italiano – https://youtu.be/9PRnPdgNhMI

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

#대학전공책 #대학솔루션 #전공책PDF

pdf 프린트 가능 일반화학 레이먼드 창 11판 입니다. 올레포트 자료 먼저 소개할 파일은 대략 1,158페이지짜리 PDF문서(PDF) 로 작성된 솔루션 대학물리학 …

+ 자세한 내용은 여기를 클릭하십시오

Source: ww.bikerslab.com

Date Published: 10/19/2021

View: 6218

대학물리학 세트 10판 | 전 2권. klover9.5 (30건). Raymond A. Serway John W. Jewett 대학물리학교재편찬위원회. 북스힐. 2019.03.05. 48,000원.

+ 자세한 내용은 여기를 클릭하십시오

Source: www.kyobobook.co.kr

Date Published: 3/19/2021

View: 5782

국회도서관 방문 이용자용 pdf 파일 아이콘 … 1-2 / Ramond A. Serway, John W. Jewett 원저 ; 대학물리학교재편찬위원회 역. 발행사항: 서울 : 북스힐, 2014.

+ 여기를 클릭

Source: dl.nanet.go.kr

Date Published: 9/13/2022

View: 2319

관련상품 : 중고상품 10개 … Raymond A. Serway, John W. Jewett 저/대학물리학교재편찬위원회 역 북스힐 2017년 … 대학물리학 – 전2권(8판, 2013년) / 하단설명.

+ 여기를 클릭

Source: www.yes24.com

Date Published: 4/24/2022

View: 4304

일반물리학2 개정10판 22장 솔루션 Principles of physics 10th edition ch22 chapter 22 think our system consists of two point charges of opposite signs fixed …

+ 여기에 보기

Source: www.studocu.com

Date Published: 12/15/2022

View: 9561

대학물리학 해설집(10판). Front Cover. 대학물리학교재편찬위원회. 북스힐, Jul 20, 2019 – 366 pages. 0 Reviews. Reviews aren’t verified, but Google checks for …

+ 여기에 표시

Source: books.google.com

Date Published: 6/24/2022

View: 401

Download Free PDF … 일반물리학 솔루션 9판 북스힐 … 1.6 (a) In the equation 12 m v 2 = 12 m v02 + mgh, (b) 3.788 ×10 9 has 4 significant figures (c) 2.46 …

+ 여기에 표시

Source: www.academia.edu

Date Published: 4/9/2021

View: 3009

주제와 관련된 더 많은 사진을 참조하십시오 [#4] 대학교 전공책 \u0026 솔루션 PDF 무료로 다운받기. 댓글에서 더 많은 관련 이미지를 보거나 필요한 경우 더 많은 관련 기사를 볼 수 있습니다.

191

Chapter 22

THINK Our system consists of two point charges of opposite signs fixed to the x axis.

Since the net electric field at a point is the vector sum of the electric fields of individual

charges, there exists a location where the net field is zero.

EXPRESS At points between the charges, the individual electric fields are in the same

direction and do not cancel. Since charge q 2 = – 4 q 1 located at x 2 = 70 cm has a greater

magnitude than q 1 = 2 ¥ 10

8 C located at x 1 = 20 cm, a point of zero field must be closer

to q 1 than to q 2. It must be to the left of q 1.

Let x be the coordinate of P , the point where the field vanishes. Then, the total electric

field at P is given by

####### ( )

2 1 2 2 021

1 | | | |

4 ( )

q q E pe x x x x

Ê ˆ = Á – ̃ Á – – ̃ Ë ̄

.

ANALYZE (a) If the field is to vanish, then

####### ( ) ( )

2 2 1 2 2 2 2 2 2111

| | | | | | ( ) . ( ) | |

q q q x x

x x x x q x x

= fi =

Taking the square root of both sides, noting that | q 2 |/| q 1 | = 4, we obtain

70 cm 2. 20 cm

x

x

= ±

.

Choosing –2 for consistency, the value of x is found to be x = -30 cm.

(b) If the particles are interchanged, the condition becomes, choosing +1/2 for

consistency,

70 cm 1

20 cm 2

x

x

= +

and the answer is x = +1 m.

192 CHAPTER 22

Referring to Eq. 22-6, we use the binomial expansion (see Appendix E) but keeping

higher order terms than are shown in Eq. 22-7:

E =

q

4 peo z

2 Ë

Á

Ê ̄

̃

ˆ Ë

Á

Ê ̄

̃

ˆ 1 +

d

z

3

4

d

2

z

2 +

1

2

d

3

z

3 + … – Ë

Á

Ê ̄

̃

ˆ 1 –

d

z

3

4

d

2

z

2 –

1

2

d

3

z

3 + …

=

q d

2 peo z

3 +

q d

3

4 peo z

5 + …

Therefore, in the terminology of the problem, E next = q d

3 / 4 pe 0 z

5 .

194 CHAPTER 22

(a) We use the usual notation for the linear charge density: l = q/L. The arc length is L

= r q with q is expressed in radians. Thus,

L = (0 m)(0 rad) = 0 m.

With q = -300(1 ¥ 10

19 C), we obtain l = -1 ¥ 10

15 C/m.

(b) We consider the same charge distributed over an area A = p r

2 = p(0 m)

2 and

obtain s = q/A = -3 ¥ 10

14 C/m².

(c) Now the area is A sphere = 4p r

2 and thus obtain:

s = q/A sphere = -2 ¥ 10

15 C/m².

(d) Finally, we consider that same charge spread throughout a volume of V = 4p r

3 /3 and

obtain the charge density r = q V / = -1 ¥ 10

12 C/m

3 .

195

We take the charge Q =45 pC of the bee to be concentrated as a particle at the

center of the sphere. The magnitude of the induced charges on the sides of the grain is

| | 1 pC. q =

(a) The electrostatic force on the grain by the bee is

2 2 2 2

( ) 1 1 | | ( / 2) ( / 2) ( / 2) ( / 2)

kQq kQ q F kQ q d D D D d D

È ̆ = + = – Í – ̇

Î + ̊

where D =1 cmis the diameter of the sphere representing the honeybee, and

d =40 mm is the diameter of the grain. Substituting the values, we obtain

( )

9 2 2 12 12 3 2 3 2

10

1 1 8 10 N m C (60 10 C)(1 10 C) (5 10 m) (5 10 m)

3 10 N.

F

È ̆ = – ¥ ◊ ¥ ¥ Í – ̇ Î ¥ ¥ ̊

= – ¥

The negative sign implies that the force between the bee and the grain is attractive. The

magnitude of the force is

10 | F | 3 10 N

= ¥.

(b) Let | Q ¢| 60 pC= be the magnitude of the charge on the tip of the stigma. The force

on the grain due to the stigma is

2 2 2 2

| | | | ( ) 1 1 | || | ( ) ( ) ( ) ( )

k Q q k Q q F k Q q d D D D d D

¢ ¢ – È ̆ ¢= + = – ¢ Í – ̇

¢ ¢ Î ¢ + ¢ ̊

where D ¢=1 mmis the distance between the grain and the tip of the stigma.

Substituting the values given, we have

( )

9 2 2 12 12 3 2 3 2

8

1 1 8 10 N m C (60 10 C)(1 10 C) (1 10 m) (1 10 m)

4 10 N.

F

È ̆ ¢= – ¥ ◊ ¥ ¥ Í – ̇ Î ¥ ¥ ̊ = – ¥

The negative sign implies that the force between the grain and the stigma is attractive.

The magnitude of the force is

8 | F | 4 10 N

¢ = ¥.

(c) Since | F ¢| |> F | , the grain will move to the stigma.

197

We take the positive direction to be to the right in the figure. The acceleration of the

proton is ap = eE / mp and the acceleration of the electron is ae = – eE / me , where E is the

magnitude of the electric field, mp is the mass of the proton, and me is the mass of the

electron. We take the origin to be at the initial position of the proton. Then, the

coordinate of the proton at time t is x = 12 a tp

2 and the coordinate of the electron is

x = L + 21 a te

2 . They pass each other when their coordinates are the same, or

1212 . 2 2

a tp = + L a te

This means t

2 = 2 L /( ap – ae ) and

( ) ( )

####### ( )

31

31 27

5

9 10 kg 0 m 9 10 kg 1 10 kg

4 10 m

p p e

p e p e e p

a eE m m x L L L a a eE m eE m m m

Ê ˆ = = =Á ̃

Á + ̃ Ë ̄

Ê ¥ ˆ =Á ̃ Ë ¥ + ¥ ̄

= ¥

or about 44 mm.

198 CHAPTER 22

The field of each charge has magnitude

( )

19 9 2 2 6 2 2 2

1 10 C (8 10 N m C ) 2 10 N C. 0 m (0 m)

kq e E k r

¥ – = = = ¥ ◊ = ¥

The directions are indicated in standard format below. We use the magnitude-angle

notation (convenient if one is using a vector-capable calculator in polar mode) and write

(starting with the proton on the left and moving around clockwise) the contributions to r E net as follows:

b E – – 20 ∞ +g b E – 130 ∞ +g b E – – 100 ∞ +g b E – – 150 ∞ +g b E – ∞ 0 g.

This yields ( )

6 2 10 76.

¥ – – ∞ , with the N/C unit understood. Alternatively, one can

use the Catesian coordinates, and add up the x and the y components:

1 1 1

2 1 2 1 2

3 3 4 3 4

ˆr ˆi

ˆr cos( )i sin(ˆ ) j cos(210 )i sin(210 ) jˆ ˆ ˆ 0 0 jˆ ˆ

ˆr cos( )i sin(ˆ ) j cos(260 )i sin(260 ) jˆ ˆ ˆ 0 0ˆ 85 jˆ

ˆr cos( )i sin(ˆ ) j cos(130 )i sin(13ˆ ˆ

q p q p

q q p q q p

p q q p q q

=

= + + + = ∞ + ∞ = – –

= + + + + + = ∞ + ∞ = – –

= – – + – – = ∞ +

4 4 4

0 1 2 3 4

0 ) jˆ 0 0 jˆ ˆ

ˆr cos( )i sin(ˆ ) j cos( 20 )i sin( 20 ) j 0 0 jˆ ˆ ˆ ˆ ˆ

r ˆ ˆ ˆ ˆ ˆr r r r r 0 1 jˆ ˆ

q q

∞ = – +

= – + – = – ∞ + – ∞ = –

= + + + + = –

r

(a) The result above shows that the magnitude of the net electric field is

6 | E net| 2 10 N/C.

= ¥

r

(b) Similarly, the direction of

r E net is –76∞ from the x axis.

200 CHAPTER 22

We assume q > 0. Using the notation l = q / L we note that the (infinitesimal) charge

on an element dx of the rod contains charge dq = l dx. By symmetry, we conclude that all

horizontal field components (due to the dq ’s) cancel and we need only “ sum ” (integrate)

the vertical components. Symmetry also allows us to integrate these contributions over

only half the rod (0 £ x £ L /2) and then simply double the result. In that regard we note

that sin q = R / r where

2 2 r = x + R.

(a) Using Eq. 22-3 (with the 2 and sin q factors just discussed) the magnitude is

( )

####### ( )

####### ( )

2 2

0 2 0 2 2 2 2 0 0 / 2 2

0 2 2 3 2 2 2 2 000

2 2 2 2 0 0

2 2 sin 4 4

2 2

2 1

2224

L L

L L

dq dx y E r x R x R

R dx q L R x

x R R x R

q L q

LR L R R L R

q pe pe

pe pe

pe pe

Ê ˆ Ê l ˆÊ ˆ = Á ̃ = Á ̃Á ̃ Ë ̄ Ë + ̄Ë + ̄

l = = ◊

= = + +

Ú Ú

Ú

r

where the integral may be evaluated by elementary means or looked up in Appendix

E (item #19 in the list of integrals). With

12 q 9 10 C

= ¥ , L =0 m,and R =

0 m, we have | | 13 N/C E =

r .

(b) As noted above, the electric field E

r points in the + y direction, or

90 ∞counterclockwise from the + x axis.

201

From symmetry, we see that the net field at P is twice the field caused by the upper

semicircular charge + = ( q l p R )(and that it points downward). Adapting the steps leading

to Eq. 22-21, we find

( )

90

net 2 2 0 90 0

2 ˆj sin ˆj. 4

q E R R

q e e

Ê ˆ = – = -Á ̃ Ë p ̄

r l

p

(a) With R = 4¥ 10

2 m and q = 1¥ 10

11 C, we obtain

11

net 2 2 12 2 2 2 2 2 0

1 10 C | | 95 N/C. (8 10 C /N m ) (4 10 m)

q E e p R p

¥ = = = ¥ ◊ ¥

r

(b) The net electric field E net

r points in the -ˆjdirection, or – 90 ∞counterclockwise from

the + x axis.

203

THINK Our system is a non-conducting rod with uniform charge density. Since the

rod is an extended object and not a point charge, the calculation of electric field requires

an integration.

EXPRESS The linear charge density l is the charge per unit length of rod. Since the total

charge – q is uniformly distributed on the rod of length L , we have l= – q L /. To

calculate the electric at the point P shown in the figure, we position the x- axis along the

rod with the origin at the left end of the rod, as shown in the diagram below.

Let dx be an infinitesimal length of rod at x. The charge in this segment is dq = l dx. The

charge dq may be considered to be a point charge. The electric field it produces at point P

has only an x component and this component is given by

dE

dx

L a x

x = + –

1

40

2 pe

l

b g

.

The total electric field produced at P by the whole rod is the integral

( )

( ) ( )

0 2 0 0 0 0

0 0

1 1 1

4 4 4

, 4 4

L L x

dx E L a x L a x a L a

L q

a L a a L a

e e e

e e

l l l Ê ˆ = = = Á – ̃ p + – p + – p Ë + ̄

l 1 = = – p + p +

Ú

upon substituting – = q l L.

ANALYZE (a) With q = 4 ¥ 10

15 C, and L = 0 m, the linear charge density of

the rod is

15 4 10 C 14 5 10 C/m. 0 m

q

L

l

¥ – = = = – ¥

(b) With a = 0 m, we obtain

( )

9 2 2 15 3

(8 10 N m C )(4 10 C) 4 10 N/C 4 (0 m)(0 m 0 m)

x

q E e a L a

1 ¥ ◊ ¥ – = – = – = – ¥ p + +

,

or

3 | Ex | 4 10 N/C

= ¥.

204 CHAPTER 22

(c) The negative sign in Ex indicates that the field points in the – x direction, or – 180 ∞

counterclockwise from the + x axis.

(d) If a is much larger than L , the quantity L + a in the denominator can be approximated

by a , and the expression for the electric field becomes

E

q

a

x = – 40

2 pe

.

Since a =50 mis much greater than L =0 m, the above approximation applies and

we have

8 Ex 1 10 N/C

= – ¥ , or

8 | Ex | 1 10 N/C

= ¥.

(e) For a particle of charge

15 q 4 10 C,

= – ¥ the electric field at a distance a = 50 m

away has a magnitude

8 | Ex | 1 10 N/C

= ¥.

LEARN At a distance much greater than the length of the rod ( a? L ), the rod can be

effectively regarded as a point charge – q , and the electric field can be approximated as

2 0

. 4

x

q E pe a

ª

206 CHAPTER 22

THINK The electric quadrupole is composed of two dipoles, each with a dipole

moment of magnitude p = qd. The dipole moments point in the opposite directions and

produce fields in the opposite directions at points on the quadrupole axis.

EXPRESS Consider the point P on the axis, a distance z to the right of the quadrupole

center and take a rightward pointing field to be positive. Then the field produced by the

right dipole of the pair is given by qd /2pe 0 ( z – d /2)

3 while the field produced by the left

dipole is – qd /2pe 0 ( z + d /2)

3 .

ANALYZE Use the binomial expansions

( z – d /2)

3 ª z

3 3 z

4 (– d /2)

( z + d /2)

3 ª z

3 3 z

4 ( d /2)

we obtain

2

3 3 3 4 3 4 4 0 0 0 0

1 3 1 3 6 . 2 ( / 2) 2 ( / 2) 2 2 2 4

qd qd qd d d qd E pe z d pe z d pe z z z z pe z

È ̆ = – ª + – + =

Í ̇ Î ̊

Since the quadrupole moment is

2 Q = 2 qd , we have

LEARN For a quadrupole moment Q , the electric field varies with z as

4 E : Q z /. For a

point charge q , the dependence is

2 E : q z / , and for a dipole p , we have

3 E : p z /.

207

With x 1 = –5 cm and x 2 = 10 cm, the point midway between the two charges is

located at x = 2 cm. The values of the charge are

q 1 = – q 2 = – 4 ¥ 10

7 C,

and the magnitudes and directions of the individual fields are given by:

####### ( )

####### ( )

9 2 2 7 1 5 1 2 2 0 1

9 2 2 7 2 5 222 0 2

| | ˆ (8 10 N m C ) | 4 10 C|ˆ ˆ i i (6 10 N C)i 4 ( ) 0 m 0 m

ˆ (8 10 N m C ) (4 10 C)ˆ ˆ i i (6 10 N C)i 4 ( ) 0 m 0 m

q E x x

q E x x

pe

pe

¥ ◊ – ¥ = – = – = – ¥

¥ ◊ ¥ = – = – = – ¥

r

r

Thus, the net electric field is

6 net 1 2 E = E + E = -(1 10 N C)i¥ ˆ

r r r .

209

Examining the lowest value on the graph, we have (using Eq. 22-38)

U = – p

Æ · E

Æ = – 100 ¥ 10

28 J.

If E = 50 N/C, we find p = 2 ¥ 10

28 C· m.

210 CHAPTER 22

Our system consists of four point charges that are placed at the corner of a square.

The total electric field at a point is the vector sum of the electric fields of individual

charges. Applying the superposition principle, the net electric field at the center of the

square is

4 4

2 110

1 ˆr 4

i i i i i i

q E E = = pe r

=Â =Â

r r .

With q 1 = +30 nC, q 2 = -15 nC, q 3 = +15 nC,and q 4 = -30 nC, the x component of the

electric field at the center of the square is given by, taking the signs of the charges into

consideration,

####### ( )

1 2 3 4 2 2 2 2 0

2 1 2 3 4 0

1 | | | | | | | | cos 45 4 ( / 2 ) ( / 2 ) ( / 2 ) ( / 2 )

1 1 1 | | | | | | | |. 4 / 2 2

x

q q q q E a a a a

q q q q a

e

e

È ̆ = Í + – – ̇ ∞ Î ̊

= + – –

p

p

Similarly, the y component of the electric field is

####### ( )

1 2 3 4 2 2 2 2 0

2 1 2 3 4 0

1 | | | | | | | | cos 45 4 ( / 2 ) ( / 2 ) ( / 2 ) ( / 2 )

1 1 1 | | | | | | | |. 4 / 2 2

y

q q q q E a a a a

q q q q a

pe

pe

È ̆ = Í- + + – ̇ ∞ Î ̊

= – + + –

The magnitude of the net electric field is

2 2 E = Ex + Ey.

Substituting the values given, we obtain

####### 2 ( 1234 ) 2 ( )

0 0

1 2 1 2 | | | | | | | | 30 nC 15 nC 15 nC 30 nC 0 4 4

Ex q q q q e a e a

= + – – = + – – = p p

and

####### ( ) ( )

( )

2 1 2 3 4 2 0 0 9 2 2 8

2

5

1 2 1 2 | | | | | | | | 30 nC 15 nC 15 nC 30 nC 4 4

8 10 N m / C (3 10 C) 2

(0 m)

1 10 N/C.

Ey q q q q pe a pe a

= – + + – = – + + –

¥ ◊ ¥

= – ¥

Thus, the electric field at the center of the square is ˆ 5 ˆ E E = y j ( 1 10 N/C)j.= – ¥

r

일반물리학2 개정10판 22장 솔루션

191

Chapter 22

THINK Our system consists of two point charges of opposite signs fixed to the x axis.

Since the net electric field at a point is the vector sum of the electric fields of individual

charges, there exists a location where the net field is zero.

EXPRESS At points between the charges, the individual electric fields are in the same

direction and do not cancel. Since charge q 2 = – 4 q 1 located at x 2 = 70 cm has a greater

magnitude than q 1 = 2 ¥ 10

8 C located at x 1 = 20 cm, a point of zero field must be closer

to q 1 than to q 2. It must be to the left of q 1.

Let x be the coordinate of P , the point where the field vanishes. Then, the total electric

field at P is given by

####### ( )

2 1 2 2 021

1 | | | |

4 ( )

q q E pe x x x x

Ê ˆ = Á – ̃ Á – – ̃ Ë ̄

.

ANALYZE (a) If the field is to vanish, then

####### ( ) ( )

2 2 1 2 2 2 2 2 2111

| | | | | | ( ) . ( ) | |

q q q x x

x x x x q x x

= fi =

Taking the square root of both sides, noting that | q 2 |/| q 1 | = 4, we obtain

70 cm 2. 20 cm

x

x

= ±

.

Choosing –2 for consistency, the value of x is found to be x = -30 cm.

(b) If the particles are interchanged, the condition becomes, choosing +1/2 for

consistency,

70 cm 1

20 cm 2

x

x

= +

and the answer is x = +1 m.

192 CHAPTER 22

Referring to Eq. 22-6, we use the binomial expansion (see Appendix E) but keeping

higher order terms than are shown in Eq. 22-7:

E =

q

4 peo z

2 Ë

Á

Ê ̄

̃

ˆ Ë

Á

Ê ̄

̃

ˆ 1 +

d

z

3

4

d

2

z

2 +

1

2

d

3

z

3 + … – Ë

Á

Ê ̄

̃

ˆ 1 –

d

z

3

4

d

2

z

2 –

1

2

d

3

z

3 + …

=

q d

2 peo z

3 +

q d

3

4 peo z

5 + …

Therefore, in the terminology of the problem, E next = q d

3 / 4 pe 0 z

5 .

194 CHAPTER 22

(a) We use the usual notation for the linear charge density: l = q/L. The arc length is L

= r q with q is expressed in radians. Thus,

L = (0 m)(0 rad) = 0 m.

With q = -300(1 ¥ 10

19 C), we obtain l = -1 ¥ 10

15 C/m.

(b) We consider the same charge distributed over an area A = p r

2 = p(0 m)

2 and

obtain s = q/A = -3 ¥ 10

14 C/m².

(c) Now the area is A sphere = 4p r

2 and thus obtain:

s = q/A sphere = -2 ¥ 10

15 C/m².

(d) Finally, we consider that same charge spread throughout a volume of V = 4p r

3 /3 and

obtain the charge density r = q V / = -1 ¥ 10

12 C/m

3 .

195

We take the charge Q =45 pC of the bee to be concentrated as a particle at the

center of the sphere. The magnitude of the induced charges on the sides of the grain is

| | 1 pC. q =

(a) The electrostatic force on the grain by the bee is

2 2 2 2

( ) 1 1 | | ( / 2) ( / 2) ( / 2) ( / 2)

kQq kQ q F kQ q d D D D d D

È ̆ = + = – Í – ̇

Î + ̊

where D =1 cmis the diameter of the sphere representing the honeybee, and

d =40 mm is the diameter of the grain. Substituting the values, we obtain

( )

9 2 2 12 12 3 2 3 2

10

1 1 8 10 N m C (60 10 C)(1 10 C) (5 10 m) (5 10 m)

3 10 N.

F

È ̆ = – ¥ ◊ ¥ ¥ Í – ̇ Î ¥ ¥ ̊

= – ¥

The negative sign implies that the force between the bee and the grain is attractive. The

magnitude of the force is

10 | F | 3 10 N

= ¥.

(b) Let | Q ¢| 60 pC= be the magnitude of the charge on the tip of the stigma. The force

on the grain due to the stigma is

2 2 2 2

| | | | ( ) 1 1 | || | ( ) ( ) ( ) ( )

k Q q k Q q F k Q q d D D D d D

¢ ¢ – È ̆ ¢= + = – ¢ Í – ̇

¢ ¢ Î ¢ + ¢ ̊

where D ¢=1 mmis the distance between the grain and the tip of the stigma.

Substituting the values given, we have

( )

9 2 2 12 12 3 2 3 2

8

1 1 8 10 N m C (60 10 C)(1 10 C) (1 10 m) (1 10 m)

4 10 N.

F

È ̆ ¢= – ¥ ◊ ¥ ¥ Í – ̇ Î ¥ ¥ ̊ = – ¥

The negative sign implies that the force between the grain and the stigma is attractive.

The magnitude of the force is

8 | F | 4 10 N

¢ = ¥.

(c) Since | F ¢| |> F | , the grain will move to the stigma.

197

We take the positive direction to be to the right in the figure. The acceleration of the

proton is ap = eE / mp and the acceleration of the electron is ae = – eE / me , where E is the

magnitude of the electric field, mp is the mass of the proton, and me is the mass of the

electron. We take the origin to be at the initial position of the proton. Then, the

coordinate of the proton at time t is x = 12 a tp

2 and the coordinate of the electron is

x = L + 21 a te

2 . They pass each other when their coordinates are the same, or

1212 . 2 2

a tp = + L a te

This means t

2 = 2 L /( ap – ae ) and

( ) ( )

####### ( )

31

31 27

5

9 10 kg 0 m 9 10 kg 1 10 kg

4 10 m

p p e

p e p e e p

a eE m m x L L L a a eE m eE m m m

Ê ˆ = = =Á ̃

Á + ̃ Ë ̄

Ê ¥ ˆ =Á ̃ Ë ¥ + ¥ ̄

= ¥

or about 44 mm.

198 CHAPTER 22

The field of each charge has magnitude

( )

19 9 2 2 6 2 2 2

1 10 C (8 10 N m C ) 2 10 N C. 0 m (0 m)

kq e E k r

¥ – = = = ¥ ◊ = ¥

The directions are indicated in standard format below. We use the magnitude-angle

notation (convenient if one is using a vector-capable calculator in polar mode) and write

(starting with the proton on the left and moving around clockwise) the contributions to r E net as follows:

b E – – 20 ∞ +g b E – 130 ∞ +g b E – – 100 ∞ +g b E – – 150 ∞ +g b E – ∞ 0 g.

This yields ( )

6 2 10 76.

¥ – – ∞ , with the N/C unit understood. Alternatively, one can

use the Catesian coordinates, and add up the x and the y components:

1 1 1

2 1 2 1 2

3 3 4 3 4

ˆr ˆi

ˆr cos( )i sin(ˆ ) j cos(210 )i sin(210 ) jˆ ˆ ˆ 0 0 jˆ ˆ

ˆr cos( )i sin(ˆ ) j cos(260 )i sin(260 ) jˆ ˆ ˆ 0 0ˆ 85 jˆ

ˆr cos( )i sin(ˆ ) j cos(130 )i sin(13ˆ ˆ

q p q p

q q p q q p

p q q p q q

=

= + + + = ∞ + ∞ = – –

= + + + + + = ∞ + ∞ = – –

= – – + – – = ∞ +

4 4 4

0 1 2 3 4

0 ) jˆ 0 0 jˆ ˆ

ˆr cos( )i sin(ˆ ) j cos( 20 )i sin( 20 ) j 0 0 jˆ ˆ ˆ ˆ ˆ

r ˆ ˆ ˆ ˆ ˆr r r r r 0 1 jˆ ˆ

q q

∞ = – +

= – + – = – ∞ + – ∞ = –

= + + + + = –

r

(a) The result above shows that the magnitude of the net electric field is

6 | E net| 2 10 N/C.

= ¥

r

(b) Similarly, the direction of

r E net is –76∞ from the x axis.

200 CHAPTER 22

We assume q > 0. Using the notation l = q / L we note that the (infinitesimal) charge

on an element dx of the rod contains charge dq = l dx. By symmetry, we conclude that all

horizontal field components (due to the dq ’s) cancel and we need only “ sum ” (integrate)

the vertical components. Symmetry also allows us to integrate these contributions over

only half the rod (0 £ x £ L /2) and then simply double the result. In that regard we note

that sin q = R / r where

2 2 r = x + R.

(a) Using Eq. 22-3 (with the 2 and sin q factors just discussed) the magnitude is

( )

####### ( )

####### ( )

2 2

0 2 0 2 2 2 2 0 0 / 2 2

0 2 2 3 2 2 2 2 000

2 2 2 2 0 0

2 2 sin 4 4

2 2

2 1

2224

L L

L L

dq dx y E r x R x R

R dx q L R x

x R R x R

q L q

LR L R R L R

q pe pe

pe pe

pe pe

Ê ˆ Ê l ˆÊ ˆ = Á ̃ = Á ̃Á ̃ Ë ̄ Ë + ̄Ë + ̄

l = = ◊

= = + +

Ú Ú

Ú

r

where the integral may be evaluated by elementary means or looked up in Appendix

E (item #19 in the list of integrals). With

12 q 9 10 C

= ¥ , L =0 m,and R =

0 m, we have | | 13 N/C E =

r .

(b) As noted above, the electric field E

r points in the + y direction, or

90 ∞counterclockwise from the + x axis.

201

From symmetry, we see that the net field at P is twice the field caused by the upper

semicircular charge + = ( q l p R )(and that it points downward). Adapting the steps leading

to Eq. 22-21, we find

( )

90

net 2 2 0 90 0

2 ˆj sin ˆj. 4

q E R R

q e e

Ê ˆ = – = -Á ̃ Ë p ̄

r l

p

(a) With R = 4¥ 10

2 m and q = 1¥ 10

11 C, we obtain

11

net 2 2 12 2 2 2 2 2 0

1 10 C | | 95 N/C. (8 10 C /N m ) (4 10 m)

q E e p R p

¥ = = = ¥ ◊ ¥

r

(b) The net electric field E net

r points in the -ˆjdirection, or – 90 ∞counterclockwise from

the + x axis.

203

THINK Our system is a non-conducting rod with uniform charge density. Since the

rod is an extended object and not a point charge, the calculation of electric field requires

an integration.

EXPRESS The linear charge density l is the charge per unit length of rod. Since the total

charge – q is uniformly distributed on the rod of length L , we have l= – q L /. To

calculate the electric at the point P shown in the figure, we position the x- axis along the

rod with the origin at the left end of the rod, as shown in the diagram below.

Let dx be an infinitesimal length of rod at x. The charge in this segment is dq = l dx. The

charge dq may be considered to be a point charge. The electric field it produces at point P

has only an x component and this component is given by

dE

dx

L a x

x = + –

1

40

2 pe

l

b g

.

The total electric field produced at P by the whole rod is the integral

( )

( ) ( )

0 2 0 0 0 0

0 0

1 1 1

4 4 4

, 4 4

L L x

dx E L a x L a x a L a

L q

a L a a L a

e e e

e e

l l l Ê ˆ = = = Á – ̃ p + – p + – p Ë + ̄

l 1 = = – p + p +

Ú

upon substituting – = q l L.

ANALYZE (a) With q = 4 ¥ 10

15 C, and L = 0 m, the linear charge density of

the rod is

15 4 10 C 14 5 10 C/m. 0 m

q

L

l

¥ – = = = – ¥

(b) With a = 0 m, we obtain

( )

9 2 2 15 3

(8 10 N m C )(4 10 C) 4 10 N/C 4 (0 m)(0 m 0 m)

x

q E e a L a

1 ¥ ◊ ¥ – = – = – = – ¥ p + +

,

or

3 | Ex | 4 10 N/C

= ¥.

204 CHAPTER 22

(c) The negative sign in Ex indicates that the field points in the – x direction, or – 180 ∞

counterclockwise from the + x axis.

(d) If a is much larger than L , the quantity L + a in the denominator can be approximated

by a , and the expression for the electric field becomes

E

q

a

x = – 40

2 pe

.

Since a =50 mis much greater than L =0 m, the above approximation applies and

we have

8 Ex 1 10 N/C

= – ¥ , or

8 | Ex | 1 10 N/C

= ¥.

(e) For a particle of charge

15 q 4 10 C,

= – ¥ the electric field at a distance a = 50 m

away has a magnitude

8 | Ex | 1 10 N/C

= ¥.

LEARN At a distance much greater than the length of the rod ( a? L ), the rod can be

effectively regarded as a point charge – q , and the electric field can be approximated as

2 0

. 4

x

q E pe a

ª

206 CHAPTER 22

THINK The electric quadrupole is composed of two dipoles, each with a dipole

moment of magnitude p = qd. The dipole moments point in the opposite directions and

produce fields in the opposite directions at points on the quadrupole axis.

EXPRESS Consider the point P on the axis, a distance z to the right of the quadrupole

center and take a rightward pointing field to be positive. Then the field produced by the

right dipole of the pair is given by qd /2pe 0 ( z – d /2)

3 while the field produced by the left

dipole is – qd /2pe 0 ( z + d /2)

3 .

ANALYZE Use the binomial expansions

( z – d /2)

3 ª z

3 3 z

4 (– d /2)

( z + d /2)

3 ª z

3 3 z

4 ( d /2)

we obtain

2

3 3 3 4 3 4 4 0 0 0 0

1 3 1 3 6 . 2 ( / 2) 2 ( / 2) 2 2 2 4

qd qd qd d d qd E pe z d pe z d pe z z z z pe z

È ̆ = – ª + – + =

Í ̇ Î ̊

Since the quadrupole moment is

2 Q = 2 qd , we have

LEARN For a quadrupole moment Q , the electric field varies with z as

4 E : Q z /. For a

point charge q , the dependence is

2 E : q z / , and for a dipole p , we have

3 E : p z /.

207

With x 1 = –5 cm and x 2 = 10 cm, the point midway between the two charges is

located at x = 2 cm. The values of the charge are

q 1 = – q 2 = – 4 ¥ 10

7 C,

and the magnitudes and directions of the individual fields are given by:

####### ( )

####### ( )

9 2 2 7 1 5 1 2 2 0 1

9 2 2 7 2 5 222 0 2

| | ˆ (8 10 N m C ) | 4 10 C|ˆ ˆ i i (6 10 N C)i 4 ( ) 0 m 0 m

ˆ (8 10 N m C ) (4 10 C)ˆ ˆ i i (6 10 N C)i 4 ( ) 0 m 0 m

q E x x

q E x x

pe

pe

¥ ◊ – ¥ = – = – = – ¥

¥ ◊ ¥ = – = – = – ¥

r

r

Thus, the net electric field is

6 net 1 2 E = E + E = -(1 10 N C)i¥ ˆ

r r r .

209

Examining the lowest value on the graph, we have (using Eq. 22-38)

U = – p

Æ · E

Æ = – 100 ¥ 10

28 J.

If E = 50 N/C, we find p = 2 ¥ 10

28 C· m.

210 CHAPTER 22

Our system consists of four point charges that are placed at the corner of a square.

The total electric field at a point is the vector sum of the electric fields of individual

charges. Applying the superposition principle, the net electric field at the center of the

square is

4 4

2 110

1 ˆr 4

i i i i i i

q E E = = pe r

=Â =Â

r r .

With q 1 = +30 nC, q 2 = -15 nC, q 3 = +15 nC,and q 4 = -30 nC, the x component of the

electric field at the center of the square is given by, taking the signs of the charges into

consideration,

####### ( )

1 2 3 4 2 2 2 2 0

2 1 2 3 4 0

1 | | | | | | | | cos 45 4 ( / 2 ) ( / 2 ) ( / 2 ) ( / 2 )

1 1 1 | | | | | | | |. 4 / 2 2

x

q q q q E a a a a

q q q q a

e

e

È ̆ = Í + – – ̇ ∞ Î ̊

= + – –

p

p

Similarly, the y component of the electric field is

####### ( )

1 2 3 4 2 2 2 2 0

2 1 2 3 4 0

1 | | | | | | | | cos 45 4 ( / 2 ) ( / 2 ) ( / 2 ) ( / 2 )

1 1 1 | | | | | | | |. 4 / 2 2

y

q q q q E a a a a

q q q q a

pe

pe

È ̆ = Í- + + – ̇ ∞ Î ̊

= – + + –

The magnitude of the net electric field is

2 2 E = Ex + Ey.

Substituting the values given, we obtain

####### 2 ( 1234 ) 2 ( )

0 0

1 2 1 2 | | | | | | | | 30 nC 15 nC 15 nC 30 nC 0 4 4

Ex q q q q e a e a

= + – – = + – – = p p

and

####### ( ) ( )

( )

2 1 2 3 4 2 0 0 9 2 2 8

2

5

1 2 1 2 | | | | | | | | 30 nC 15 nC 15 nC 30 nC 4 4

8 10 N m / C (3 10 C) 2

(0 m)

1 10 N/C.

Ey q q q q pe a pe a

= – + + – = – + + –

¥ ◊ ¥

= – ¥

Thus, the electric field at the center of the square is ˆ 5 ˆ E E = y j ( 1 10 N/C)j.= – ¥

r

애플레포트✔북스힐 대학물리학 10판 솔루션 요약정리물리솔루션

레포트 다운로드: 북스힐 대학물리학 10판 요약정리.zip

[size : 18,274 Kbyte]

일 분 전만큼 먼 시간은 없다.

Nothing is as far away as one minute ago.

짐 비숍 Jim Bishop

핵심 대학 물리학 10 판 솔루션 | [#4] 대학교 전공책 \U0026 솔루션 Pdf 무료로 다운받기 215 개의 자세한 답변

We are using cookies to give you the best experience on our website.

You can find out more about which cookies we are using or switch them off in settings.

북스힐 일반물리학 연습문제 솔루션 & 해설

반응형

728×170

북스힐 일반물리학 연습문제 솔루션입니다. 이 글은 북스힐 일반물리학 연습문제 솔루션을 다루고 있습니다. 북스힐 일반물리학 연습문제 솔루션을 찾고 계신분은 본문 하단에 북스힐 일반물리학 연습문제 솔루션 다운로드 링크가 있으니 다운로드 한 후 사용하시기 바랍니다. 맨 하단 링크를 통해 유료 결제, 로그인 필요없이 자료를 다운로드 받으실 수 있습니다.

북스힐 일반물리학 연습문제 솔루션 다운로드 링크는 다음과 같습니다.

반응형

그리드형

키워드에 대한 정보 대학 물리학 10 판 솔루션

다음은 Bing에서 대학 물리학 10 판 솔루션 주제에 대한 검색 결과입니다. 필요한 경우 더 읽을 수 있습니다.

See also  기초 이동 현상론 6 판 솔루션 | [#4] 대학교 전공책 \U0026 솔루션 Pdf 무료로 다운받기 8186 좋은 평가 이 답변
See also  마데 이라 와인 | [ 와인 ] 소주보다 알콜 도수가 높은 포르투갈의 주정강화 와인 | 포트와인, 마데이라와인 14 개의 자세한 답변

See also  장애 이해 교육 Ppt | [장애인 인권 \U0026 이해 교육] 사회적 장애인 인식교육(장애이해교육/장애인식교육/중고등학생 대상) 다양성과 인권을 중심으로 빠른 답변

이 기사는 인터넷의 다양한 출처에서 편집되었습니다. 이 기사가 유용했기를 바랍니다. 이 기사가 유용하다고 생각되면 공유하십시오. 매우 감사합니다!

사람들이 주제에 대해 자주 검색하는 키워드 [#4] 대학교 전공책 \u0026 솔루션 PDF 무료로 다운받기

  • 대학전공책
  • 전공책무료다운
  • 전공책PDF
[#4] #대학교 #전공책 #\u0026 #솔루션 #PDF #무료로 #다운받기


YouTube에서 대학 물리학 10 판 솔루션 주제의 다른 동영상 보기

주제에 대한 기사를 시청해 주셔서 감사합니다 [#4] 대학교 전공책 \u0026 솔루션 PDF 무료로 다운받기 | 대학 물리학 10 판 솔루션, 이 기사가 유용하다고 생각되면 공유하십시오, 매우 감사합니다.

Leave a Reply

Your email address will not be published. Required fields are marked *